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Diffusion-weightedmagnetic resonance (MR) signals reflect information about underlying tissuemicrostructure
and cytoarchitecture. We propose a quantitative, efficient, and robust mathematical and physical framework for
representing diffusion-weighted MR imaging (MRI) data obtained in “q-space,” and the corresponding “mean
apparent propagator (MAP)” describing molecular displacements in “r-space.” We also define and map novel
quantitative descriptors of diffusion that can be computed robustly using this MAP-MRI framework.
We describe efficient analytical representation of the three-dimensional q-space MR signal in a series expan-
sion of basis functions that accurately describes diffusion in many complex geometries. The lowest order
term in this expansion contains a diffusion tensor that characterizes the Gaussian displacement distribution,
equivalent to diffusion tensor MRI (DTI). Inclusion of higher order terms enables the reconstruction of
the true average propagator whose projection onto the unit “displacement” sphere provides an orientational
distribution function (ODF) that contains only the orientational dependence of the diffusion process. The
representation characterizes novel features of diffusion anisotropy and the non-Gaussian character of
the three-dimensional diffusion process. Other important measures this representation provides include
the return-to-the-origin probability (RTOP), and its variants for diffusion in one- and two-dimensions—the
return-to-the-plane probability (RTPP), and the return-to-the-axis probability (RTAP), respectively. These
zero net displacement probabilities measure the mean compartment (pore) volume and cross-sectional
area in distributions of isolated pores irrespective of the pore shape.
MAP-MRI represents a new comprehensive framework to model the three-dimensional q-space signal and
transform it into diffusion propagators. Experiments on an excised marmoset brain specimen demonstrate
that MAP-MRI provides several novel, quantifiable parameters that capture previously obscured intrinsic fea-
tures of nervous tissue microstructure. This should prove helpful for investigating the functional organization
of normal and pathologic nervous tissue.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Non-invasive magnetic resonance imaging (MRI) has become par-
amount to the diagnosis and clinical management of many diseases
of the central nervous system (CNS). MRI characterization of tissue
water behavior also has contributed significantly to our fundamental
understanding of CNS tissue microstructure. Diffusion-weighted MRI
(DW-MRI), which is sensitized to the random motion of endogenous
water molecules within the tissue environment, has proven particu-
larly important to both clinical and basic science applications.
righam and Women's Hospital,

n).

rights reserved.
Conventional DW-MR utilizes two magnetic field gradients
(Stejskal and Tanner, 1965) of equal magnitude and direction applied
around the 180° radiofrequency (RF) pulse in a spin echo MR se-
quence. The magnetic moment of a hydrogen nucleus suffers a net
phase shift if its locations during the application of the first and second
gradients are different. A population of randomly moving nuclei ex-
hibits phase incoherence, which leads to an attenuation in the overall
signal. Mathematically, the signal is related to an important quantity,
referred to as the propagator, through a Fourier relationship whose
inversion yields the expression (Callaghan, 1991; Stejskal, 1965)

P rð Þ ¼ ∫R3ei2πq⋅rE qð Þdq; ð1Þ

where P(r) denotes the propagator indicating the likelihood for par-
ticles to undergo a net displacement r. The reciprocal space vector
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q = (2π)−1γδG is an experimentally controlled parameter, where γ
is the gyromagnetic ratio, and δ is the duration of the diffusion sen-
sitizing gradients whose magnitude and orientation are determined
by G. The normalized signal E(q) is just the ratio of the signal at q
to its value at q = 0.

From a physical point of view, a propagator can be assigned to
every location in space and within each voxel. If Pl(R, R + r) denotes
the local propagator for a spin whose initial and final locations are R
and R + r, respectively, the MR measurable propagator is given by
(Callaghan, 1991; Stejskal, 1965)

P rð Þ ¼ ∫ρ Rð ÞPl R;R þ rð ÞdR; ð2Þ

where ρ(R) is the likelihood of finding a spin at location R. Due to the
averaging process inherent in the above equation and because the
formulation assumes a simple pulse sequence that features a pair of
infinitesimally short gradient pulses—conditions often violated to
some extent in practice—while neglecting the influence of imaging
gradients, we refer to P(r) that is computed through Eq. (1) as the
mean apparent propagator (MAP).

Fromapractical point of view, Eq. (1) suggests that by collectingdata
at different q-vectors, e.g., by sampling a large Cartesian grid, one can re-
construct theMAP through Eq. (1) using the discrete Fourier transform.
This scheme is referred to as q-space imaging (QSI) (Callaghan et al.,
1990). The same analysis can be employed for spectroscopy or imaging
data, where in the latter case, the transformation is repeated for every
voxel of the image, and the results reveal an image of displacement pro-
files (Callaghan et al., 1988; Wedeen et al., 2005).

Eq. (1) establishes the fundamental relationship between the
MR signal and the propagator. Both these functions are strongly
influenced by the microscopic environment, which is impossible
to resolve through direct MRI due to its limitations in sensitivity.
However, if reliable models that link the diffusion process to either
of these functions is available, voxel-averaged microscopic descrip-
tors of the medium can be inferred from a collection of MR signals.
Such an endeavor typically demands an accurate representation of
the signal and/or propagator. For example, parameterizing the small
|q| behavior of the signal profile through an oriented (multivariate)
Gaussian function has lead to the introduction of diffusion tensor
imaging (DTI) (Basser et al., 1994a). Since then numerous methods
have been developed to unravel the complex tissue architecture with-
in each voxel (Aganj et al., 2010; Alexander et al., 2002; Dell'Acqua
et al., 2010; Frank, 2002; Jian et al., 2007; Kaden et al., 2007; Liu et
al., 2003; Özarslan and Mareci, 2003; Özarslan et al., 2006b; Tournier
et al., 2004; Tuch, 2004). Those methods that involve analytical repre-
sentations of the signal were found to bemost convenient as they pro-
vide compact representations of the signal as well as the estimated
quantities and are inherently less susceptible to the effects of noise;
for example, the advantage of an analytical representation was recog-
nized (Anderson, 2005; Descoteaux et al., 2007; Hess et al., 2006) in
q-ball imaging whose original realization (Tuch, 2004) lacked such a
representation.

The above-mentioned techniques have focused almost exclusively
on delineating the orientational features of the diffusion process
even when there is more than one major fiber orientation within
the voxel—a scenario, which DTI does not account for. However, ori-
entational features, like the orientation distribution function (ODF),
constitute only a part of the information that could be obtained
from diffusion-attenuated signals. Of particular interest are the fea-
tures that follow from the restricted character of the diffusion pro-
cess, which are contained in the full displacement distribution and
its dependence on the diffusion time. Such features contain informa-
tion about cell size, shape, and transmembrane exchange, which are
extremely important in biomedical applications of MR, and are ob-
tainable from data acquired at large q-values. To infer such micro-
structural information and reconstruct the full MAP rather than its
orientational features available in the ODF, acquisition of data with
three-dimensional q-space coverage is beneficial (Callaghan et al.,
1988; Wedeen et al., 2005; Wu and Alexander, 2007). Therefore, the
development of a robust analytical model of the signal that could
be used to describe data acquired over the entire three-dimensional
q-space would be highly useful. To this end, several models have been
introduced in recent years to represent the three-dimensional q-space
signal (Assemlal et al., 2009, 2011; Cheng et al., 2010; Descoteaux
et al., 2011; Hosseinbor et al., 2011; Özarslan et al., 2006b, 2009c;
Ozcan, 2010; Ye et al., 2012; Yeh et al., 2011).

In this article, we introduce a new method, referred to as
MAP-MRI that subsumes DTI and extends it to generate a true
and proper propagator or MAP in each voxel. By quantifying the
non-Gaussian character of the diffusion process, this method more
accurately characterizes diffusion anisotropy. This technique provides
several new quantitative parameters, or MRI “stains,” derived from
the entire displacement MAP that captures distinct novel features
about nervous tissue microstructure. The technique is based on
the idea of expressing the three-dimensional q-space MR signal in
terms of the eigenfunctions of the quantum-mechanical simple har-
monic oscillator (SHO) Hamiltonian, sometimes called the Hermite
functions, which have also appeared in the reconstruction of the
propagator from its cumulants (Liu et al., 2003, 2004). Estimation
of probability distributions in a series of Hermite functions is well-
studied in the statistics literature (Schwartz, 1967) and such expan-
sions were shown to possess powerful properties, such as rapid con-
vergence in both real and Fourier spaces (Walter, 1977) that make
them ideally suited to problems of q-space signal analysis and mean
propagator estimation. This representation is an extension of its
one-dimensional (1D) counterpart (Özarslan et al., 2008a), which
was shown to accurately represent the signal decay originating from
very different environments (from free to restricted). In fact, the
1D version of the method was shown to estimate important micro-
structural properties such as the moments of the underlying com-
partment size distribution in a medium composed of isolated pores
(Özarslan et al., 2011), and generating temporal scaling contrast
(Özarslan et al., 2012) by employing a disordered media model
for DW-MR (Özarslan et al., 2006a). We introduced an earlier version
of the three-dimensional (3D) formulation in Özarslan et al. (2009c),
which was instrumental in evaluating the robustness of sparse and
optimal strategies for multiple-shell q-space MRI acquisitions (Koay
et al., 2012). Here, we introduce a more refined, general, and compre-
hensive approach by incorporating an anisotropic scale parameter
into the representation, which increases its adaptability to different
diffusion profiles. The resulting representation reproduces DTI in its
first term, and generalizes it to account for non-Gaussianity in the
measured diffusion process.

One-dimensional SHO based reconstruction and
estimation (1D-SHORE)

Before we introduce the formulation for representing three-
dimensional q-space acquisitions, we examine a considerably simpler
problem that involves q-space data obtained with different q-values
while the gradient orientation, which defines the x-axis, is fixed.
Such acquisitions have been utilized to address a number of impor-
tant questions in biomedical research (Cohen and Assaf, 2002; Cory
and Garroway, 1990). Although the focus of the paper is the modeling
framework for three-dimensional acquisitions that will be presented
in the following sections, the formulation for the 1D q-space acquisi-
tions has been found to be very useful in several applications
(Özarslan et al., 2011, 2012), and here can serve as a pedagogical
step before we introduce the more complicated 3D problem.

The q-space signal, obtained from a 1D acquisition as described
above, can be written as a function of one variable—the q-value.
The central idea of the 1D-SHORE technique is to express such a
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diffusion-weighted MR signal profile in a series of basis functions
(Özarslan et al., 2008a),

S qð Þ ¼
XN−1

n¼0

ãnϕn u; qð Þ; ð3Þ

with

ϕn u; qð Þ ¼ i−nffiffiffiffiffiffiffiffiffiffi
2nn!

p e−2π2q2u2Hn 2πuqð Þ; ð4Þ

where Hn(x) is the nth order Hermite polynomial and u is a character-
istic length that determines the scaling of the functions. In Eq. (3)
and throughout the article, the “˜” sign is used to denote coefficients
representing the signal prior to normalization. The normalized MR
signal attenuation, E(q) = S(q)/S(0), can also be expressed in this
basis as

E qð Þ ¼
XN−1

n¼0

anϕn u; qð Þ; ð5Þ

where

an ¼ ãn
S0

; ð6Þ

and S0 = S(0) is the non-diffusion-weighted signal, which can be
estimated from the coefficients ãn:

S0 ¼
XN−1

n¼0

ãnϕn u;0ð Þ ¼
XN−1

n¼0;2;4;…

ffiffiffiffiffi
n!

p

n!!
ãn; ð7Þ

where n!! = n × (n − 2) × (n − 4) × …2. It is well-known that
the functions ϕn form a complete orthogonal basis for the space of
square-integrable functions (Ohanian, 1990).

A 1D analog of Eq. (1), given by

P1D xð Þ ¼ ∫∞
−∞

ei2πqxE qð Þdq ð8Þ

is frequently employed to transform the 1D q-space signal into a
1D propagator. An important and useful property of the employed
basis functions is that their Fourier transforms are also Hermite func-
tions, enabling direct estimation of the 1D propagator through the
expression

P1D xð Þ ¼
XN−1

n¼0

anψn u; xð Þ; ð9Þ

where

ψn u; xð Þ ¼ inffiffiffiffiffiffi
2π

p
u
ϕn

1
2πu

; x
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ1πn!

p
u
e−x2= 2u2ð ÞHn x=uð Þ:

ð10Þ

The basis functions ψn(u,x) are real-valued, which assures that the
probabilities will be real-valued when the an are real. This is a conse-
quence of the phase convention we have employed in Eq. (4), which
ensures that the real and imaginary parts of the signal are even and
odd, respectively. Moreover, Eq. (6) guarantees that the total proba-
bility, i.e., the integral of the function P(x) will be unity as expected
for a proper probability density function.
Note that the functions ψn(u,x), defined in Eq. (10), are the solu-
tions to the eigenvalue equation

−u2 ∂2

∂x2
þ x2

u2

 !
ψn u; xð Þ ¼ λnψn u; xð Þ; ð11Þ

with eigenvalues λn = (2n + 1). The SHO analogy emerges because
of this equation. The second term is a parabolic potential consistent
with Hooke's law. In this context, the parameter u determines the
“stiffness” of the spring, and as such, inversely related to the spring
constant in the displacement domain. From a practical point of
view, the choice of u should be consistent with the signal decay rate
for the rapid convergence of the series. Therefore, a reasonable choice
of u is the root mean squared displacements of the molecules, i.e.,

u ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Dtd

p
; ð12Þ

where D is the diffusion coefficient and td is the diffusion time. With
this choice, the first term of Eq. (5) becomes the Stejskal–Tanner for-
mula, where all higher order terms quantify the deviation from a
monoexponential decay. Similarly, the first term is a Gaussian in the
displacement domain. The crucial point is that all higher order correc-
tion terms are orthogonal to this Gaussian term and because the basis
is complete, it can successfully approximate any kind of signal decay.

Having an analytical representation of the full q-space data en-
ables one to quantify various features of the reconstructed propagator
directly from the an coefficients through analytical expressions. Such
expressions for the moments of the propagator as well as for the
zero net displacement probability are provided in (Özarslan et al.,
2011, 2012) and will not be reproduced here for brevity. For applica-
tions such as image registration and segmentation, one needs a (dis)
similarity measure between different signal or displacement profiles;
such a measure will be crucial in the development of scalar indices in
the next section. Since the SHORE framework represents the displace-
ment profile as a series of orthogonal functions, the coefficients can
be envisioned as components of a vector in a Hilbert space. Therefore,
it is meaningful to consider the inner product of two displacement
profiles P(x) and Q(x), as

P xð Þ;Q xð Þh i ¼ ∫∞
−∞

P xð ÞQ xð Þ dx: ð13Þ

It should be noted that the above quantity can be evaluated in
q-space as well. If E(q) and F(q) are, respectively, the signal attenua-
tion profiles corresponding to P(x) and Q(x), then b P(x), Q(x) > is
just twice the integral of the real part of the quantity E*(q)F(q) over
the positive q-axis.

If the 1D-SHORE coefficients of P(x) and Q(x), obtained with the
scale parameters u and v, are denoted by an and bn, respectively, this
inner product is given by

P xð Þ;Q xð Þh i ¼
XN−1

m¼0

XN−1

n¼0

ambnTmn u; vð Þ; ð14Þ

Tmn u; vð Þ ¼ Kmþn

ffiffiffiffiffiffiffiffiffiffi
m!n!

p
ffiffiffiffiffiffi
2π

p
uv

Xm
r¼0;2;…

Xn
s¼0;2;…

1
u2 þ

1
v2

� �− mþn−r−sþ1ð Þ=2
ð15Þ

−1ð Þ rþsð Þ=22 mþn−r−sð Þ=2 mþ n−r−s−1ð Þ!!
um−rvn−s m−rð Þ! n−sð Þ!r!!s!! ; ð16Þ

and Km + n is unity when m + n is even and vanishes otherwise.
Based on the definition of the inner product in Eq. (13), we pro-

pose an angular metric (covariance) between two propagators:

cosθPQ ¼ P xð Þ;Q xð Þh i
P xð Þ; P xð Þh i Q xð Þ;Q xð Þh ið Þ1=2 ; ð17Þ
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which represents the similarity of the two propagators. As a special
case, if the 1D-SHORE coefficients of P(x) and Q(x) are obtained
with the same scale parameter, i.e., u = v, the angular similarity is
given simply by the expression

cosθPQ ¼ ∑N−1
n¼0 anbn

∑N−1
n¼0 a

2
n

� �1=2 ∑N−1
m¼0b

2
m

� �1=2 : ð18Þ

By continuing the geometric analogy, this measure can be converted
readily to a dissimilarity index sinθPQ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− cos2θPQ
p

. Note that this
dissimilarity is already scaled between 0 and 1. However, depending
on the quantity, one may be interested in rescaling the dissimilarity
values so that variations within a certain range can be emphasized
to improve the contrast in resulting images. To this end, the family of
functions defined by

σ t; �ð Þ ¼ t3�

1−3t� þ 3t2�;
ð19Þ

can be employed, where t is the quantity being scaled (e.g., sin θPQ),
and � is a positive-valued shape parameter that determines the range
of values to be emphasized by the transformation.

MAP-MRI for the 3D problem: a new generalization of DTI

Our formulation for 3D data follows very closely from the above
treatment. There are two versions of the three-dimensional formula-
tion. In the first approach, referred to as 3D-SHORE, the same scale pa-
rameter is used in all directions, intrinsically assuming that the spring
constant is isotropic. This version can be formulated in Cartesian or
spherical coordinates. The formulation with isotropic stiffness was
introduced by Özarslan et al. (2009c), while an updated presentation
with several corrections and extensions is given in Appendix A.
The second version, however, features a more general description
involving a tensorial scale parameter, which represents the diffusion
process better. We refer to this latter approach as MAP-MRI, which is
the subject of this section.

We start by generalizing the differential equation whose solutions
form the functional basis, Ψn1n2n3 . Eq. (11) becomes

−∇′TA′∇′ þ r′
T
A′−1

r′
� �

Ψn1n2n3
A′
; r′

� �
¼ Λn1n2n3

Ψn1n2n3
A′
; r′

� �
: ð20Þ

Here, and throughout the article, the ′ symbols indicate that the
vectors and matrices are in the image reference frame, which does
not vary from voxel to voxel. A′ is a symmetric, positive-definite,
second-order (rank-2) tensor that accounts for the spring's stiffness
and coupling, as well as its anisotropy. It proves useful to choose
our reference frame such that the tensor A′ is diagonal. Let R be the
orthonormal matrix that diagonalizes A′ such that

A ¼ RA′RT ¼
u2
x 0 0
0 u2

y 0
0 0 u2

z

0
B@

1
CA: ð21Þ

Thus, q′ and r′ vectors in the image frame can be transformed into
this “anatomical” reference frame through the expressions q ¼ Rq′

and r ¼ Rr′, respectively. Note that this reference frame is useful be-
cause Eq. (20) becomes separable, and the eigenfunctions are given
as the product of three one-dimensional eigenfunctions, i.e.,

Ψn1n2n3
A; rð Þ ¼ ψn1

ux; xð Þψn2
uy; y
� �

ψn3
uz; zð Þ: ð22Þ

The eigenvalue corresponding to the above eigenfunction is Λ =
2N + 3, where N = n1 + n2 + n3 defines the total energy of the
spring. In a similar fashion, the basis functions in q-space are separa-
ble, and given by

Φn1n2n3
A;qð Þ ¼ ϕn1

ux; qxð Þϕn2
uy; qy
� �

ϕn3
uz; qzð Þ; ð23Þ

and the three-dimensional q-space signal can be expressed as

S qð Þ ¼
XNmax

N¼0
∑

n1 ;n2 ;n3f g
ãn1n2n3Φn1n2n3

A;qð Þ; ð24Þ

where the second summation is taken over all possibilities of non-
negative indices ni (i = 1, 2, 3), satisfying the condition n1 + n2 +
n3 = N. The signal attenuation is given by

E qð Þ ¼
XNmax

N¼0
∑

n1 ;n2 ;n3f g
an1n2n3

Φn1n2n3
A;qð Þ; ð25Þ

where an1n2n3 ¼ ãn1n2n3
=S0 and S0 is the non-diffusion-weighted sig-

nal intensity revealed by setting q = 0 in Eq. (24), yielding the
expression

S0 ¼
XNmax

N¼0
∑

n1 ;n2 ;n3f g
ãn1n2n3

Bn1n2n3
; ð26Þ

where

Bn1n2n3
¼ Kn1n2n3

n1!n2!n3!ð Þ1=2
n1!!n2!!n3!!

; ð27Þ

and Kn1n2n3
¼ 1 if n1, n2, and n3 are all even, and Kn1n2n3

¼ 0 otherwise.
The number of unknown coefficients to be estimated from the

fit is

Mgen ¼ 1
6

Nmax þ 1ð Þ Nmax þ 2ð Þ Nmax þ 3ð Þ: ð28Þ

However, when complex data are unavailable or when the prop-
agator is expected to be symmetric, which is the case in the absence
of flow, Y-shaped crossings, etc., the coefficients corresponding to
odd values of N vanish. In this case, the number of coefficients is
given by

Msym ¼ 1
6

F þ 1ð Þ F þ 2ð Þ 4F þ 3ð Þ; ð29Þ

where F = ⌊Nmax/2⌋.
The propagator, which is just the three-dimensional inverse Fourier

transform of E(q) is similarly given by

P rð Þ ¼
XNmax

N¼0
∑

n1 ;n2 ;n3f g
an1n2n3

Ψn1n2n3
A; rð Þ: ð30Þ

Taking A as the covariance matrix of displacements, i.e., setting
(Basser, 2002)

A ¼ 2Dtd; ð31Þ

where D is the diffusion tensor in the anatomical reference frame,
reveals the connection between the MAP-MRI method and DTI.
Note that Φ000(A,q) = exp(−2π2qTAq). Therefore, with the choice
in Eq. (31), the first term of the series in Eq. (25) is nothing but
the signal model employed in DTI. It follows naturally that the first
term of the series in Eq. (30) is an oriented Gaussian function. All
high order terms are the “orthogonal corrections” to the Gaussian
approximation.
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In many applications of 3D q-space imaging, one is interested in
visualizing the orientational features of the propagator. To this end,
one can compute the following integral:

Is Ω̂
� �

¼ ∫∞
0P rΩ̂
� �

r2þsdr; ð32Þ

where Ω̂ ¼ Ωx;Ωy;Ωz

� �T
is a unit vector. Is Ω̂

� �
can be considered as

the sth order “radial moment” of the propagator. This function is
expected to be well-defined for all values of s greater than or equal
to −2. Note that I0 Ω̂

� �
is a true orientation distribution function

(ODF) as its integral over the surface of the unit sphere is unity. The
above quantity can be readily estimated from the expansion coeffi-
cients via the expression

Is Ω̂
� �

¼ ρ3þsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22−sπ3 Aj j

q XNmax

N¼0
∑

n1 ;n2 ;n3f g
an1n2n3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1!n2!n3!

p
Cn1n2n3

Ω̂
� �

; ð33Þ

where

Cn1n2n3
Ω̂
� �

¼
Xn1

i¼0;2;…

Xn2
j¼0;2;…

Xn3
k¼0;2;…

−1ð Þ iþjþkð Þ=2 Γ
3þsþN−i−j−k

2

� �
αn1−iβn2−jγn3−k

n1−ið Þ! n2−jð Þ! n3−kð Þ!i!!j!!k!! ;

ð34Þ

with

ρ ¼ Ωx

ux

� �2
þ Ωy

uy

 !2

þ Ωz

uz

� �2
" #−1=2

ð35aÞ

α ¼ 2ρ
Ωx

ux
ð35bÞ

β ¼ 2ρ
Ωy

uy
ð35cÞ

γ ¼ 2ρ
Ωz

uz
: ð35dÞ

Computing the function Is Ω̂
� �

for many values of Ω̂ using the

above expressions yields the desired orientational profile. Note that
this profile should be transformed to the image reference frame
prior to visualization by using the expression Ω̂

′ ¼ RTΩ̂.

Scalar indices for 3D q-space imaging (QSI)

In this section, we shall introduce some indices that could be
used to quantify various features of the three-dimensional diffusion
process. In each subsection, one of the indices is discussed within
the context of three-dimensional q-space imaging. Subsequently, an
expression relating the index to the MAP-MRI coefficients is provided
for easy estimation of the index.

Return-to-the-origin probability (RTOP), mean compartment volume,
and their variants for lower-dimensional diffusion

Zero-displacement probabilities and their relations to microstructure
Perhaps one of themost important quantities to obtain is the prob-

ability for molecules to undergo no net displacement between the
application of the two diffusion sensitizing gradients. This return-
to-the-origin probability (RTOP) is simply given by the value P(0),
which, according to Eq. (1), is just the integral of the signal attenuation
function over the entire q-space, i.e.,

RTOP ¼ ∫R3E qð Þdq: ð36Þ

To illustrate the significance of RTOP, we shall consider a popula-
tion of isolated pores and employ the simplifying assumption that
the gradients are infinitesimally short. Each compartment in the
ensemble may be of arbitrary size, shape, and orientation. Since each
pore's contribution to the aggregate signal is proportional to the num-
ber of spinswithin the pore, themeasured signal attenuation is given by

E qð Þ ¼ ∫∞
0dV V f Vð ÞE q;Vð Þ
∫∞
0dV V f Vð Þ

; ð37Þ

where f(V) is the compartment volume distribution and E(q,V) is
the signal attenuation for a single pore of volume V. Note that the
denominator in the above expression is just the mean compartment
volume, which we shall denote as 〈V〉. Inserting Eq. (37) into Eq. (36),
we see that the observed RTOP value is given by

RTOP ¼ Vh i−1∫∞
0dV V f Vð ÞRTOP Vð Þ; ð38Þ

where RTOP(V) is the RTOP value for a single pore of volume V. When
the diffusion time (separation of the diffusion gradients) is long enough
for themolecules to traverse the longest end-to-end distancewithin the
pore space, this value is just the reciprocal of V (Özarslan et al., 2009b),
i.e.,RTOP(V) = V−1; this follows from the fact that the propagator is the
autocorrelation function of the pore indicator function (Callaghan,
1991), which is constant within the pore space and vanishes elsewhere.
Consequently, the integral in the above expression is unity, and the
RTOP value is nothing but the reciprocal of the statistical mean pore
volume, i.e.,

Vh i ¼ RTOP−1
: ð39Þ

This is quite an important result as no assumption on the shape or
coherence of the compartments is made.

In environments like white-matter wherein the compartments
have significant levels of shape anisotropy (Özarslan, 2009), it may
be difficult to satisfy the long diffusion time requirement along certain
directions, which could lead to inaccuracies in the estimated mean
pore volume. Consequently, in such environments, it is beneficial to
consider only those directions along which diffusion is restricted
(e.g., on the plane perpendicular to the axons). Since restricted diffu-
sion leads to a significant reduction in the apparent diffusion coeffi-
cient (ADC), these directions can be associated with lower ADC
values. Thus, for the case of coherently organized white-matter, the
orientations along which diffusion is most restricted correspond to
the plane defined by the eigenvectors of the diffusion or A tensor asso-
ciated with their smaller eigenvalues. Therefore, two-dimensional
q-space data can be used to estimate a return-to-the-axis probability
(RTAP) through the expression

RTAP ¼ ∫R2E q⊥ð Þdq⊥; ð40Þ

where q⊥ denotes the q-vector on the sampled plane. Following the
same lines as above, it is straightforward to show that this quantity
is simply the reciprocal of the mean cross-sectional area (〈A〉), or,

Ah i ¼ RTAP−1
: ð41Þ

Finally, a return-to-the-plane probability (RTPP) can be computed
through a one-dimensional integral of the signal when q is parallel
with the fiber orientation, i.e.,

RTPP ¼ ∫RE q==
� �

dq==; ð42Þ
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where q// denotes the component of the q-vector along the fiber axis.
A derivation similar to those for RTOP and RTAP above reveal that for
diffusion taking place within coherently oriented capped cylinders,
RTPP is equal to the reciprocal of the mean length of the cylinders.
However, inside substantially prolate confinements, the long diffusion
time condition can be difficult to fulfill along the cylinder's axis. In this
case, the RTPP value would be close to (4πD0td)−1/2, which is its value
for unrestricted diffusion.

Estimation of the zero-displacement probabilities fromMAP-MRI coefficients
The MAP-MRI representation of the MR signal enables simple esti-

mation of the RTOP value. The relevant expression is given by

RTOP ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π3 Aj j

q XNmax

N¼0
∑

n1 ;n2 ;n3f g
−1ð ÞN=2an1n2n3Bn1n2n3

: ð43Þ

Moreover, since theMAP-MRI coefficients are computed in a refer-
ence frame determined by the anatomy, the signal and the propagator
can be easily separated into components along the three axes defining
the anatomical reference frame. For example, in white-matter areas
with coherently oriented fibers, the principal eigenvector of the
matrix A can be assumed to be the fiber orientation (Basser et al.,
1994b), which can be assigned to the x-direction without loss of
generality. In this case, RTPP is simply the integral of P(0, y, z) over
the yz-plane, while RTAP is equal to the integral of P(x, 0, 0) over
the x-axis. In terms of the MAP-MRI coefficients, these quantities are
given by

RTAP ¼ 1
2πuyuz

XNmax

N¼0
∑

n1 ;n2 ;n3f g
−1ð Þ n2þn3ð Þ=2an1n2n3

Bn1n2n3
ð44aÞ

RTPP ¼ 1ffiffiffiffiffiffi
2π

p
ux

XNmax

N¼0
∑

n1 ;n2 ;n3f g
−1ð Þn1=2an1n2n3Bn1n2n3

: ð44bÞ

Measuring the similarity of 3D apparent propagators

In this section, we introduce a similarity measure for two three-
dimensional propagators. Our formulation extends the angular metric
introduced for the case of one-dimensional propagators. As before,
the crucial step involves defining an inner product (〈P(r),Q(r)〉) of
two propagators, P(r) and Q(r), through the three-dimensional ver-
sion of the integral in Eq. (13). This integral can be evaluated from
the MAP-MRI coefficients through the expression

P rð Þ;Q rð Þh ið Þ

¼
XNmax

M¼0
∑

m1 ;m2 ;m3f g

XNmax

N¼0
∑

n1 ;n2 ;n3f g
am1m2m3

bn1n2n3Tm1n1
ux; vxð ÞTm2n2

uy; vy
� �

Tm3n3
uz; vzð Þ;

ð45Þ

where am1m2m3
denotes the MAP-MRI coefficient for P(r) obtained

with the scale parameters ux, uy, and uz. Similarly, bn1n2n3 is the
MAP-MRI coefficient for Q(r) obtained with the scale parameters vx,
vy, and vz.

An angular metric can be computed via an equation analogous to
Eq. (17). When the scale parameters are the same for the two propa-
gators, i.e., ux = vx, uy = vy, and uz = vz, the angular metric can be
computed through the simple expression

cosθPQ ¼ ∑Nmax
N¼0 ∑ n1 ;n2 ;n3f gan1n2n3

bn1n2n3

∑Nmax
M¼0∑ m1;m2 ;m3f ga

2
m1m2m3

� �1=2 ∑Nmax
N¼0 ∑ n1 ;n2 ;n3f gb

2
n1n2n3

� �1=2 :
ð46Þ
It should be noted that the MAP-MRI coefficients are computed in
the anatomical reference frame, which varies from voxel to voxel. If
the comparisons are to be made in a common reference, e.g., the
image or laboratory frame, the coefficients would have to be “rotated”
accordingly. This can be done using the well-known transformation
rules (Nazmitdinov et al., 1996).

The above expressions are expected to be useful in applications
such as image segmentation and registration. They can also be used
to compute meaningful indices that quantify various important fea-
tures of the three-dimensional propagator. Two such indices are in-
troduced next.

Propagator anisotropy (PA)

An important characteristic of the diffusion process is its direc-
tional dependence (anisotropy). A scalar index that quantifies the
degree of anisotropy is known to be an important marker whose
value has been recognized since the early days of DTI (Pierpaoli
and Basser, 1996). Indices have been defined for more general high
angular resolution acquisitions as well (Özarslan et al., 2005). In
this section, we shall move one step further and define an index
that relates the entire three-dimensional apparent propagator to a
measure of anisotropy. This can be accomplished by computing the
angular metric between the propagator, and its isotropic version.
The latter can be obtained by computing the isotropic part of the
propagator using the scheme detailed in Appendix B. The end result
is a series of MAP-MRI coefficients on1n2n3 associated with the isotro-
pic stiffness tensor A = u0

2I, where I is the 3 × 3 identity matrix.
The propagator anisotropy (PA) index then measures the angular
similarity between the propagator P(r) and its isotropic part O(r) as
introduced in the previous section. We found that rescaling the sine
of the angle with the shape parameter, � = 0.4, yields the desired
level of contrast in real images. So, we define the PA index through
the relationship

PA ¼ σ sinθPO;0:4ð Þ; ð47Þ

where the scaling function σ(.) is defined in Eq. (19). Note that the
isotropic propagator is rotationally invariant by definition. Therefore,
the angular metric can be computed without transforming the coeffi-
cients to a common reference frame.

To make comparisons with DTI-based anisotropy information pos-
sible, we devise a newDTI anisotropymeasure based on the same idea
of comparing the dissimilarity of the anisotropic Gaussian propagator
to its isotropic version. The corresponding index, which we shall de-
note by PADTI, is obtained by using the form for the similarity measure
given below:

cosθPOð Þ2DTI ¼
8u3

0uxuyuz

u2
x þ u2

0

� �
u2
y þ u2

0

� �
u2
z þ u2

0

� � ð48Þ

This similarity measure between the anisotropic Gaussian propa-
gator and the isotropic Gaussian propagator is used for two purposes
within the MAP-MRI framework. Its first application involves the
determination of u0 from ux, uy, and uz. Among all choices for u0
corresponding to different instances of the isotropic propagator, we
are interested in the one most similar to our anisotropic propagator
characterized by the parameters ux, uy, and uz. Thus, we take the de-
rivative of the above quantity with respect to u0 and set the result
to 0. With the definitions X = ux

2, Y = uy
2, Z = uz

2, and U = u0
2, the

value of U that determines the most similar isotropic propagator is
given by the root of the cubic polynomial

3XYZ þ XY þ XZ þ YZð ÞU− X þ Y þ Zð ÞU2−3U3 ¼ 0: ð49Þ
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This equation has only one real positive root, which determines the
value of u0 for which the similarity measure given by Eq. (48) is
maximized.

The second application of Eq. (48) is in the computation of the
PADTI index. After u0 is determined according to the procedure in
the above paragraph, (sin θPO)DTI is computed from the resulting
maximum value of (cos θPO)DTI2 , which is subsequently plugged into
Eq. (47) to obtain PADTI.

Since the quantities ux, uy, uz, and u0 are related to the eigen-
values of the diffusion tensor, PADTI and traditional DTI-based an-
isotropy indices like fractional anisotropy (FA) can be written as
functions of the same quantities. Note that PADTI could capture in-
formation that is unavailable in more traditional measures of anisot-
ropy like FA. The novel conceptual features of the PADTI index are
the employed angular metric and the notion of the “most similar
isotropic propagator” consistent with this metric. On the other
hand, traditional DTI indices tend to be based on the statistical spread
of the three eigenvalues, which intrinsically assumes that the “most
similar isotropic propagator” is defined by the mean of the three
eigenvalues of the diffusion tensor.Most importantly for our purposes,
the same notion of distance between propagators is employed in
the definitions of PA and PADTI; this feature makes PADTI useful for
comparisons.

Non-Gaussianity (NG)

A similar idea is used to formulate an index of non-Gaussianity that
quantifies the dissimilarity between the propagator, P(r), and its
Gaussian part, G(r). The latter Gaussian propagator is readily available
from a diffusion tensor analysis, and is given solely by the first term of
the series in Eq. (30). If the coefficients for the non-Gaussian propaga-
tor are computed with the same A tensor as in Eq. (31), the similarity
between P(r) and G(r) is given by

cosθPG ¼ a000

∑Nmax
N¼0 ∑ n1 ;n2;n3f ga

2
n1n2n3

� �1=2 : ð50Þ

The non-Gaussianity (NG) index is then defined to be

NG ¼ sinθPG: ð51Þ

Note that the anatomical reference frame is established by the
same tensor, A. Thus, there is no need to transform the coefficients
into a common reference frame in this case either.

The NG index can be considered an alternative to the kurtosis
measure (Jensen et al., 2005), which is referred to as another index
for non-Gaussianity. While kurtosis is based solely on the moments
of the propagator up to order 4, NG is based on the distance between
the entire propagator and its Gaussian counterpart; as such, NG is
typically influenced by the propagator's higher order moments. It
should be noted that the MAP-MRI coefficients can be employed
to accurately estimate all moments of the MAP. In fact, an explicit
relationship was provided for the 1D problem elsewhere (Özarslan
et al., 2008a) and the temporal scaling of the moments were charac-
terized as a potentially novel contrast by Özarslan et al. (2012). The
corresponding expressions for the 3D problem, which could be
employed to compute the multivariate kurtosis, were not included
here for brevity.

Next, we once again exploit the separability of the MAP-MRI ex-
pansion to model diffusion along directions parallel with and perpen-
dicular to the principal eigenvector of the diffusion tensor to quantify
the non-Gaussianity of the diffusion process along these directions.
We outline how this can be achieved for the orientation along the
principal eigenvector, which defines the x-axis. We are interested
in diffusion along x, and thus we set y and z coordinates to 0. The
resulting function has an expansion in the 1D-SHORE basis, and
the corresponding coefficients an1 can be computed by equating the
three- and one-dimensional expansions, i.e.,

P x;0;0ð Þ ¼
XNmax

N¼0
∑

n1 ;n2 ;n3f g
an1n2n3

ψn1
ux; xð Þψn2

uy;0
� �

ψn3
uz;0ð Þ ð52aÞ

¼ 1
2πuyuz

XNmax

N¼0
∑

n1 ;n2 ;n3f g
an1n2n3

−1ð Þ n2þn3ð Þ=2Kn2
Kn3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2!n3!

p
n2!!n3!!

ψn1
ux; xð Þ

ð52bÞ

¼ 1
2πuyuz

XNmax

n1

an1ψn1
ux; xð Þ; ð52cÞ

resulting in the relationship

an1
¼
XNmax

N¼0
∑
n2 ;n3f g

an1n2n3 −1ð Þ n2þn3ð Þ=2Kn2
Kn3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2!n3!

p
n2!!n3!!

; ð53Þ

where the second summation assigns all values of n2 and n3 satis-
fying the condition n2 + n3 = N-n1. These an1 coefficients can be
subsequently used to compute the angular metric between the
Gaussian and non-Gaussian propagators along the principal eigen-

vector: cosθPG== ¼ a0 ∑Nmax
n1¼0a

2
n1

� �−1=2
, and NG// = sin θPG// in analogy

with Eq. (51).
The derivation for diffusion on the transverse plane follows simi-

larly from the expansions of P(0, y, z), and is based on the expression

NG⊥ = sin θPG ⊥ with cosθPG⊥ ¼ a00 ∑Nmax
n2¼0∑

Nmax
n3¼0a

2
n2n3

� �−1=2
, where

the coefficients an2n3 can be computed through

an2n3
¼

XNmax

N¼n2þn3

XNmax−n2−n3

n1¼0

an1n2n3
−1ð Þn1=2Kn1

ffiffiffiffiffiffiffi
n1!

p
n1!!

: ð54Þ

Methods

Numerical implementation

The actual implementation of the MAP-MRI framework is relatively
straightforward. Our implementation consists of the following steps:

1. The MR data set was first used to fit the equation S q′
� � ¼

S0 exp −2π2q′TA′q′
� �

. It is important to impose a positive-

definiteness constraint for the tensor A′. To this end, a scheme
discussed in Koay et al. (2006) is used. This scheme employs the
following steps: (i) By taking the logarithm of both sides of the
above equation, one obtains a linear relationship. This equation is
solved using a weighted linear regression method. Weighting the
logarithm of the signal values by multiplying them with the actual
signal values was necessary to reduce the noise-induced effects in
the linear estimation (Basser et al., 1994a). (ii) The resulting esti-
mate for the tensor is fed into a modified Cholesky decomposition
routine, which is used in obtaining an upper triangular matrix, U,
so that UTU is as close as possible to the estimate from the weighted
linear fit. (iii) The components of the matrix U are fed into a
Levenberg–Marquardt nonlinear fitting procedure calledMPFIT (pro-
vided at http://www.physics.wisc.edu/ craigm/idl/fitting.html), to fit

the equation S q′
� � ¼ S0 exp −2π2q′TUTUq′

� �
to the signal values.

The final estimate of A′ is obtained via the expression A′ ¼ UTU.
We note that any other tensor estimation scheme imposing a posi-
tive definiteness constraint could be used for this step.

2. The matrix A′ obtained from the first step is diagonalized. The
resulting eigenvalues are assigned to the scale parameters, ux2, uy2,

http://www.physics.wisc.edu/
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and uz
2. The matrix whose columns are the eigenvectors of A′ is

defined to be the transformation matrix R so that the matrix A ¼
RA′RT is diagonal. The q′ vectors were also transformed according
to q ¼ Rq′.

3. This step involves the estimation of the MAP-MRI coefficients from
the signal values. The essential goal is to find the set of coefficients
that best represents the data (in q-space) while enforcing con-
straints in the displacement domain (r-space). So, there is only
one unified estimation problem, and this set of an1n2n3 coefficients
is used in all subsequent computations. First, we discuss how the
problem is posed within a quadratic programming framework,
and then describe how the constraints on the probability values
implied by the coefficients can be imposed.
Posing the estimation problem. Eq. (24) was used to estimate the
coefficients ãn1n2n3 from the entire q-space data consisting of Ndata

points. Nmax was taken to be 6 (unless stated otherwise), resulting
in Msym = 50 coefficients. The coefficients were cast into an Msym-
dimensional vector a, and the signal values were also placed
inside a vector of dimension Ndata denoted by y. The Ndata × Msym

dimensional design matrix Q was formed by computing the basis
functions Φn1n2n3 A;qð Þ in a consistent manner. With these defini-
tions, Eq. (24) turns into a matrix equation y = Qa. Thus, we are
interested in minimizing the quantity ‖y − Qa‖2 = aTQTQa −
2yTQa + yTy subject to non-negativity and normalization con-
straints as described below. It is clear that the estimation of a can
be cast as a convex quadratic programming problem. To solve it,
we used the QUADPROG routine in the IMSL library (Rogue Wave
Software, Boulder, CO, USA) provided by IDL's (Exelis, Boulder,
CO, USA) Advanced Math and Stats Module. This procedure allows
the incorporation of constraints in the estimation. This feature was
exploited to enforce the positive definiteness of the propagator as
described next.
Constraining the estimation. To enforce positive-definiteness, the
displacement space is sampled by a Cartesian grid of 35 × 35 × 18
points so that the first “slice” of this grid is on the xy-plane, and
the remaining data points have positive z coordinates effectively
sampling half of the displacement space. The longest distance
from the origin we are interested in sampling was taken to be
rmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10D0td

p
, where D0 is the bulk diffusivity. Therefore, the

spacing between adjacent points was Δx = rmax/17. Those points
that are farther than rmax from the origin were excluded, resulting
in a total of Nsample = 10,690 samples in the displacement space.
Eq. (30) was also turned into a matrix equation using these points
for the displacement. The constraintswere set up such that the prob-
ability density value at each point on this lattice is nonnegative.
An additional constraint was imposed by limiting the integral of
the probability density (over the sampled half-space) to values
less than or equal to 0.5 so that the total number of constraints
is Nsample + 1. This integral probability value was estimated by
adding up the probability density values over the sampled lattice
after halving the values that lie on the xy-plane.
In mathematical terms, the constraints can be expressed by the
inequality

K

wTK

0
BB@

1
CCAa≥

0
⋮
0

−0:5

0
BB@

1
CCA; ð55Þ

where K is an Nsample × Msym matrix. The ith row of this matrix,
where 1 ≤ i ≤ Nsample, is evaluated by computing the function
Ψn1n2n3

A; rið Þ, and multiplying it by (Δx)3 for proper scaling.
Here, ri is the ith sample in the displacement space. The last row
is necessary to impose the constraint on the integral of the proba-
bility. Here, w is a vector of Nsample elements, indicating the
weights of all samples, i.e., the elements of w take the values of
−0.5 and −1 for samples that are on the xy-plane and otherwise,
respectively. The minus signs on the elements of w as well as on
the right-hand side of the above matrix inequality are necessary
because the constraints define the minimum values whereas the
integral probability is bounded from above.
The end result of this step includes the an1n2n3 coefficients, which
are obtained by dividing the ãn1n2n3

estimates by S0 obtained
from Eq. (26) for each voxel of the image. We note that although
our implementation is based on quadratic programming, any other
constrained optimization framework such as the nonnegative least
squares (NNLS) algorithm (Lawson andHanson, 1987) could be used
to estimate the MAP-MRI coefficients.

4. The estimated coefficients were fed into Eqs. (43) and (44a), (44b)
to compute the zero displacement probabilities, and into Eq. (51)
for the NG indices, respectively. The coefficients were also used
in Eq. (33) to visualize the orientational profile Is Ω̂

� �
. Prior to

visualization, the transformation Ω̂
′ ¼ RT Ω̂ was applied to undo

the coordinate transformation in Step 2 above.
5. To compute the PA index, essentially the same scheme described in

Step 3was repeated, this time for the formulation in spherical coor-
dinates presented in Appendix A yielding the coefficients κjlm. In
this analysis, the isotropic scale parameter u0 was taken by finding
the roots of the cubic polynomial in Eq. (49) numerically. These κjlm
coefficients were used in computing the MAP-MRI coefficients,
on1n2n3 , representing the isotropic part of the three-dimensional
propagator through Eq. (65). These were further used in the com-
putation of PA (through Eq. (47)) as discussed in the previous
section.

All computations above except the computation and visualization
of the Is Ω̂

� �
profiles took 32 min (approximately one minute for

the DTI estimation, 10 min for the computation of the MAP-MRI coef-
ficients and zero displacement and non-Gaussianity indices, and
another 21 min for the estimation of the coefficients for the isotropic
distribution and the PA index) for the slice shown in Fig. 1. The com-
putations were performed on a laptop computer with a 2.6-GHz Core
i7 processor (Intel, Santa Clara, CA, USA) using the IDL programming
language (Exelis, Boulder, CO, USA). Significant improvements in com-
putational speed can be achieved via more efficient implementations,
through parallelization, and low-level programming languages.

MR image acquisition

MR images of an excised, formalin-fixed marmoset brain washed in
buffered saline were acquired on a 7-T vertical-bore Bruker Avance III
scanner (Bruker BioSpin, Billerica, MA, USA) equipped with a micro2.5
gradient system with GREAT 60 amplifiers. The brain specimen was
immersed in perfluoropolyether (Fomblin LC/8, Solvay Solexis, Italy),
and imaged in a 25 mm NMR tube using a radiofrequency coil with
30 mmdiameter. The tubewas suspended from the top to avoid contact
with the gradient coil. The temperature was monitored during the
acquisition.

A diffusion-weighted multislice spin echo EPI pulse sequence with
4 segments was used. A total of 489 acquisitions were performed by
sampling q-space on 7 different shells defined by b-values: 200, 800,
1800, 3200, 5000, 7200, and 9800 s/mm2 obtained by employing
gradients of magnitude 109, 218, 327, 436, 546, 655, and 764 mT/m,
respectively. The numbers of images acquired on these shells were, re-
spectively, 5, 14, 32, 56, 87, 125, and 170. The gradient vectors on each
shell were distributed isotropically over the surface of the respective
sphere. MR imaging parameters were: TE = 45 ms, TR = 6 s, Δ = 30
ms, δ = 3 ms, bandwidth = 250 kHz, NEX = 40, matrix = 90 × 90,
number of 2D slices = 20, voxel size = 300 × 300 × 600 μm3. The
acquisition of the entire data set took 5.5 days. Fig. 1 illustrates seven
randomly selected images each at a different diffusion-weighting.



b=200 s/mm2 b=9800 s/mm2b=7200 s/mm2b=5000 s/mm2b=3200 s/mm2b=1800 s/mm2b=800 s/mm2

Fig. 1. Sample coronal images for 7 increasing diffusion weightings (Δ/δ = 30/3 ms) collected from an excised, formalin-fixed marmoset brain (image plane approximately 1.8-mm
anterior to bregma (Palazzi and Bordier, 2008)).
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Results

Resolution of orientational complexity

In Fig. 2, coronal grayscale PA maps of the excised marmoset brain
located 0.7 mm posterior (top row), 1.2 mm anterior (middle row)
and 4.9 mm anterior (bottom row) to bregma (Palazzi and Bordier,

2008) are shown with companion MAP-MRI-derived I2 Ω̂
� �

profiles

visualized via color glyphs from selected regions. In the top row,
there is a diagonal area of crossing between the inferior-located ex-
ternal medullary lamina and the superiorly-located internal capsule
within the thalamic reticular nucleus. In the second row, the internal
capsule extends superiorly from the bottom left corner through the or-
thogonal fibers of the external capsule to become the corona radiata. In
Fig. 2. Resolution of orientational complexity in three different slices (top to bottom) of them
by rectangular boxes in the grayscale PA maps (middle). The I2 Ω̂

� �
profiles visualized via

MAP-MRI technique.
the bottom row, significant anisotropy is detected in a caudatolenticular
gray matter bridge traversing the oblique caudocranial orientation of
the internal capsule.

Scalar indices

The scalar MAP-MRI indices introduced above along with the
traditional DTI-derived indices (Basser and Pierpaoli, 1996) of S0, frac-
tional anisotropy (FA), mean diffusivity (MD), diffusivities parallel
with (D//) and perpendicular to (D⊥) the principal eigenvector of
the diffusion tensor, and direction-encoded color (DEC) (Pajevic and
Pierpaoli, 1999) maps are shown in Fig. 3. In the third row, the
MAP-MRI maps of zero displacement probabilities are illustrated. To
generate images with consistent dimensions of reciprocal length, the
armoset brain. Several regions of interest with orientational heterogeneity are indicated
color glyphs (right and left) illustrate the distinct fiber orientations resolved by the
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Fig. 3. Traditional DTI and MAP-MRI-derived parameter coronal maps of marmoset
brain. First two rows: traditional DTI-derived maps of non-diffusion attenuated signal
(S0), direction encoded color (DEC), fractional anisotropy (FA), mean diffusivity (MD),
and diffusivities along (D//) and perpendicular (D⊥) to the principal eigenvector. Third
row: three zero displacement probabilities are shown. The cube-root of the return-
to-the-origin probability (RTOP), and the square root of the return-to-the-axis proba-
bility (RTAP) are provided so that these quantities have the same dimension with the
return-to-the-plane probability (RTPP). Fourth row: three non-Gaussianity indices
(from left to right: three-dimensional, parallel with and perpendicular to the principal
eigenvector of the diffusion tensor) are illustrated. Fifth row: maps of DTI-derived and
MAP-MRI-derived propagator anisotropy (PA) maps are illustrated. The final image
depicts the quantity (θPO)MAP − (θPO)DTI that represents the difference in the anisotropy
maps obtained via MAP-MRI and DTI schemes. Please see the Results section for com-
plete description of the differences between specific conventional DTI and MAP-MRI
parameters.
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cube root of RTOP and square root of RTAP are shown. There appear to
be two main clusters of voxels in the (RTOP)1/3 image wherein the
white-matter areas generally appear hyperintense, and gray-matter
areas make up the lower intensity regions. There is limited contrast
within each cluster. The RTPP and RTAP values can be seen as
the “decomposition” of the RTOP values into components parallel
and perpendicular to the direction of the primary eigenvector of the
diffusion tensor, respectively. Since gray-matter areas are relatively iso-
tropic, this decomposition does not change the values significantly—
the intensity differences between the three images are mostly due
to differences in the scaling of the underlying values. However, in highly
anisotropic white-matter areas, RTPP is significantly smaller than
(RTAP)1/2 as the propagator is considerably broader along the fiber ori-
entation. Interestingly, the RTPP values in white-matter are distributed
around the values for gray-matter. There is some contrast within the
white-matter areas. The higher intensity regions in the RTPP map are
expected to correspond to the white-matter areas with complex fiber
orientation distributions (e.g., due to crossing or fanning fibers) or
substantial presence of isotropic restrictions (e.g., glial cells). Indeed, a
portion of these white-matter regions with larger RTPP values, most
notably in corona radiata, exhibit crossing patterns in the orientation
maps (not shown). On the other hand, the RTPP values are small in re-
gions with highly anisotropic, coherent single fiber architecture such
as the corpus callosum, internal capsule and optic tracts. The principal
eigenvector of the diffusion tensor deviates substantially from the
fiber orientations in regions with crossing fibers. This deviation does
not occur in regions with coherent fiber architecture, which appear
hypointense in RTPP maps. Thus, we conclude that the local apparent
propagator is considerably broader along the fiber orientation. Similar
though inverted features of the contrast in the D// maps support this
conclusion. The contrast in the (RTAP)1/2 map is similar to that in the
(RTOP)1/3 image, with themain difference being the enhanced contrast
between the coherently organizedwhite-matter areas and gray-matter.

The fourth row of Fig. 3 shows the non-Gaussianity (NG) indices
associated with the three-dimensional propagator (left), along the
principal eigenvector of the diffusion tensor (NG//, middle), and per-
pendicular to it (NG⊥, right). Note the different scaling employed in
the NG// map. The contrast in the NG map is very similar to that in
the (RTOP)1/3 image wherein the white-matter areas similarly exhibit
greater overall non-Gaussianity than the gray-matter regions. The de-
composition of this non-Gaussianity into directions parallel with
and perpendicular to the principal eigenvector of the diffusion tensor,
however, yields very different results. The NG// map is relatively
homogeneous (despite the narrower dynamic range captured by
the scaling); the most significant elevation occurs within voxels of
subcortical white matter. Based on their relative locations, these
anatomic regions appear to represent an interface between cortex
and classic white matter tissue architectures that may be susceptible
to partial volume effects. We note that lower S0 values in white-
matter and rapid decay along the fiber orientation could push the sig-
nal toward the Rician noise floor at larger q-values, which would lead
to an apparent non-monoexponential behavior (Koay et al., 2009a),
thus elevate the observed NG// value in white-matter. Nonetheless,
the lack of contrast between white- and gray-matter suggests that
diffusion is relatively Gaussian throughout gray-matter and parallel
to coherent fiber orientations within white-matter. Note that this in-
formation and contrast are not available in any of the DTI-derived
maps. Non-Gaussianity in the orientation perpendicular to the
principal eigenvector is the major contributor to the overall non-
Gaussianity; thus the contrasts in NG and NG⊥ maps are similar. It is
interesting that in all NG maps, fiber crossings in white-matter do not
contribute to non-Gaussianity—an assumption previously employed
by the multi-tensor models.

Finally, anisotropy measures are shown in the last row of Fig. 3. On
the left is the PADTI index, which is computed from Eqs. (48) and (47)
and is based on the distance between the propagator implied by DTI
and the Gaussian component of the isotropic distribution, which
is most similar to the anisotropic Gaussian propagator as described
in Section 4.3. This Gaussian and isotropic distribution is defined
by the first term in the MAP-MRI representation of the isotropic prop-
agator as described in Appendix B. Similarly, the map in the middle is
the propagator anisotropy (PA) index that is based on the dissimilar-
ity of MAP-MRI's full propagator, and possibly non-Gaussian isotropic
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Fig. 4. Apparent mean volume (left) and apparent mean cross-sectional area (right)
maps. For clarity, the latter was shown only on white-matter areas determined by
including those voxels with a PADTI value of greater than 0.4. The AMCSA values for the
corpus callosum are approximately 13 μm2, which corresponds to a radius of about
2 μm for pores with perfectly circular cross sections. Each row depicts these images for
a different slice in the marmoset data set.
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propagator. Finally, the image on the right is the difference between
the angular dissimilarities employed in the computation of PADTI

and PA indices. The PADTI map is very similar to the FA map as
expected for all DTI-based anisotropy images. The intensity differ-
ences between FA and PADTI maps are due to the way the indices
are defined. The PADTI index has the advantage that its definition em-
ploys the same approach taken in the development of the PA index.
To compare the PA map with its DTI version, we used the differences
between the angular dissimilarity measures rather than the actual PA
values to keep the final difference map insensitive to the employed
scaling function. The difference image is scaled such that positive
values are represented in grayscale while anisotropy decrease is
represented in a color scale (Özarslan et al., 2008b). Anisotropy in
the full MAP is significantly greater than the anisotropy of DTI's
Gaussian propagator in most voxels, except for a few voxels immedi-
ately adjacent to the ventricles or basal cisterns (demonstrated by
the color portion of the scale). Interesting contrasts appear within
gray- andwhite-matter regions in the angular differencemap. Anisotro-
py is well-captured by DTI in the corpus callosum, external capsule and
temporal subcortical white matter, resulting in hypointense regions
in the angular difference map. However, in more paramedian regions
like the internal capsule, corona radiata and parietal subcortical white
matter, non-Gaussian terms seem to contribute significant levels of
anisotropy to the PA measure, thus yielding large ΔθPO values.

Compared toDTI,MAP-MRI's PA indices also detectmore underlying
structural anisotropy within traditional gray matter structures, such as
the cortex, thalamus and caudate nucleus in the coronal slice shown.
For example, there ismore apparent anisotropywithin the deep and su-
perficial layers of the parietal cortex presumably from the pyramidal
neuron exiting axons and peripheral dendritic trees, respectively. Simi-
larly, there is increased anisotropy detected throughout the dentate
gyrus likely from the radial granule cell neuron orientations. Thus,
tractography based on the PA values obtained via MAP-MRI may in-
crease our ability to interrogate neuronal connectivity within nervous
tissue structures that do not just contain coherently-oriented macro-
scopic axon bundles (Shepherd et al., 2006).

The reciprocal of the RTOP and RTAP values have the dimensions of
volume and area, and can be used to derive maps of apparent mean
volume (AMV) and apparent mean cross sectional area (AMCSA),
respectively (Fig. 4). For clarity, only those voxels with a PADTI value
of at least 0.4 are included in the AMCSAmaps as the AMCSA parame-
ter is more meaningful in white-matter. Under certain idealized
conditions, these parameters then equal the mean volume and mean
cross-sectional area of the pores that contain the observed water
molecules (see Theory). This suggests that AMV and AMCSA maps
may correlate with the volume and cross-sectional area of cells within
nervous tissue. Because the myelinated white-matter axons are not
very permeable, the influence of axons' cross-sectional area on the
computed AMCSA map is expected to be strong. Indeed, Ong et al.
(2008) report that zero displacement probabilities are inversely
related to the axon diameter in excised mouse spinal cord specimens.
In the present marmoset data, the AMCSA values for the corpus
callosum are approximately 13 μm2, which corresponds to about a
2 μm radius if the cross section of the pores is assumed to be perfectly
circular. Some overestimation is expected since this analysis does not
account for the extracellular space (Ong et al., 2008). Most voxels
within the marmoset brain dataset will contain more complex and
heterogeneous tissue architectures than simple corpus callosum or
spinal cord white matter, but Fig. 4 suggests that cell size distribution
is one of the determinants for the computed AMCSA and AMV values.
This will require further investigation in future studies.

MAP analysis on limited data

The original marmoset brain imaging dataset comprises 489 dif-
ferent images obtained by sampling the q-space up to a b-value of
9800 s/mm2. This is a relatively time- and gradient-intensive proto-
col, which would be difficult to acquire when strong gradient
coils, large signal-to-noise ratios, and/or long acquisition times are
unavailable, which is invariably the case in clinical settings. To assess
the feasibility of the method under more clinically-feasible condi-
tions, we repeated the MAP-MRI analysis using a small subset of
the entire data set. Specifically, we used the data points up to a
b-value of 3200 s/mm2, and further reduced the total number of
q-space samples used in the MAP-MRI analysis by including those
points with a non-negative z-component. This resulted in a total of
only 55 data points. Fig. 5 illustrates the MAP-MRI results obtained
from the full (left) and partial (right) datasets. It was necessary
to reduce Nmax to 4 for the latter. This choice was established on
observations of the condition number of the design matrix and sim-
ulations performed on well-characterized systems. The estimations
are expected to be most meaningful when the condition number
of the design matrix is not very large. When we use the full data
set, the condition numbers were found to be 18, 250, and 5800
when Nmax was set to 4, 6, and 8, respectively. When the small sub-
set of the entire data set is used (to generate the right hand side
of Fig. 5), the condition numbers are 62 and 2600 for Nmax values
of 4 and 6, respectively. Based on these findings, we have decided
to use Nmax = 6 for the full data set, and Nmax = 4 for its subset.
Further simulations of idealized systems (results not shown) con-
firmed that reasonable estimates are achieved with these choices
for Nmax.
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Fig. 5. MAP reconstructions from limited data. MAP-MRI results obtained by using all 489 q-space samples (on seven shells) are shown on the left. A small subset of the dataset
comprising 55 samples was obtained by including only those points with a b-value of 3200 s/mm2 or less that are located in one of the hemispheres. MAP reconstructions and scalar
images obtained by using these 55 points are shown on the right.

27E. Özarslan et al. / NeuroImage 78 (2013) 16–32
The orientation profiles, overlaid on the coronal grayscale PA
maps, demonstrate the impact of reconstruction with partial data
on a region 4.3 mm anterior to bregma (Palazzi and Bordier, 2008)
with the anterior commissure (left-to-right) and septal fornix
(through plane central part of figure). It is very encouraging that
the partial data reconstruction is reasonably similar to the original
one despite significant reductions in the number of images and the
range of b-values employed. The scalar maps, particularly the PA
image, appear to be affected more. Although the images generated
from partial data appear less detailed, more anisotropic, and less
Gaussian, much of the information content prevails in the signifi-
cantly less demanding protocol. Future studies will be directed to-
wards developing a feasible dataset for MAP analysis that overcomes
the multiple technical limitations of q-space MRI acquisitions in
human subjects.

Choice of the radial moment order, s

The maps in Figs. 2 and 5 were generated by computing the
integral in Eq. (33) with s = 2. Fig. 6 shows the maps as a function
of s for three different ROIs representative of white-matter regions
with coherent (green box) and crossing (red box) fibers, and cortical
gray-matter (blue box). In the last column, glyphs representing the
Gaussian propagator associated with the DTI analysis, obtained from
the first term of the MAP-MRI representation, are shown. It should
be noted that DTI's Gaussian propagator has the same orientational
information for all s. Setting it to some “non-special” value like 5
was to emphasize that the derivations would be valid for any value
of s. The function I0 Ω̂

� �
is a true orientation distribution function

(ODF) as its integral over the sphere is unity. Fig. 6 demonstrates
that increasing s leads to sharper orientation profiles. However,
at very large s-values, distinct fiber orientations tend to merge and
some orientational features start to disappear. Disappearance of
orientational complexity was observed in simulations of multifiber
systems as well (results not shown) indicating that very large values
of s should be avoided. Based on these observations, we argue that the
orientational features of the propagator can be captured adequately
when s is set to a value slightly above 0—hence our choice s = 2 in
Figs. 2 and 5.

Orientation profiles in the anatomical reference frame

As described in the Theory section, the reconstruction is performed
in the reference frame in which the diffusion tensor is diagonal. When
the orientational features of the underlying propagator are to be
visualized, the reconstructed MAP needs to be transformed back
into the reference frame common to all voxels (the image reference

frame). This was accomplished for the function Is Ω̂
� �

by transforming

its argument via the expression Ω̂
′ ¼ RT Ω̂. This transformation was

necessary to provide a correct representation of the glyph consistent
with the location of the voxel within the entire image. However,
the form of the apparent propagator before it undergoes this trans-
formation could be potentially very useful as well. To illustrate this
point, in Fig. 7 we show eight voxels selected within the cortical
gray-matter of the marmoset brain. These voxels are marked via
blue dots on the PA map on the left. The corresponding set of orien-
tational profiles before and after the reference frame transformation
are shown on the right. The approximately radial preference of diffu-
sion within the cortex is evident from the top row, which provides
the glyphs after the transformation. On the other hand, the glyphs
in the anatomical reference frame, illustrated on the bottom row,
are aligned so that the preferred orientation is consistently along
the horizontal direction, which follows from assigning the largest
eigenvalue of the diffusion tensor to the horizontal axis in the diago-
nalization scheme. Having the propagator defined in a consistent
frame of reference could make it possible to quantitate the parame-
ters associated with the shape of the apparent propagator without
having the influence of its orientation. By using a metric between
the propagators (e.g., the angular metric employed in the formula-
tion of the scalar indices in this work), the image could be clustered
into regions with similar shape characteristics (Freidlin et al., 2007).
We envision this approach to be useful in addressing problems such
as cortical parcellation.
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Fig. 6. The effect of the “radial moment”, s, on the orientation profiles. The top image shows three ROIs representative of white-matter regions with coherent (green) and crossing

(red) fibers, and cortical gray-matter (blue). The glyphs illustrate the corresponding Is Ω̂
� �

profiles with different values of s. For comparisons, the last column shows the I5 Ω̂
� �

profiles obtained from the leading DTI term of the MAP-MRI representation.
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Discussion

Influence and estimation of the tensorial scale parameter

The MAP-MRI framework requires the estimation of not only
the coefficients ãn1n2n3 but also the anisotropic scale parameter A′

(hence A) as seen in Eq. (24). A novel aspect of our implementation,
which proved to be very robust in practice, involves breaking this
otherwise challenging computational problem into two very well-
studied problems of (i) positive-definite tensor estimation to obtain
A′, and (ii) convex quadratic programming to estimate the coeffi-
cients ãn1n2n3 . Although the coefficient estimates depend on A′, we
have observed that the propagator and the scalar measures are very
Fig. 7. Eight selected voxels within the cortex of the marmoset brain (left panel) with th

bottom, respectively) associated with each voxel demonstrated to the right.The latter pr

Ω̂
′ ¼ RT Ω̂ , and provide the glyphs oriented in a consistent way that could be useful when t
weakly dependent on the particular value of A′, which functions
merely as a scale parameter. This dependence is weak because the
employed basis is complete, and thus capable of representing any
function. For this reason, a scale parameter is not even used in statis-
tics literature (see e.g., Schwartz (1967)). However, to efficiently
represent the propagator (i.e., with few terms in the series), one
needs a scale parameter in reasonable proximity to the width of the
functions being used. In an earlier implementation of the method
(results not shown), we used only those data points in the low-q re-
gime to estimate the tensor. Although the tensor fit was very satisfac-
tory, the end results were not as good as those we obtained when the
tensor model was fitted to the entire data set. This is because when
the entire data set is used, the scale parameter captures the overall
e corresponding orientation glyphs in image and anatomical reference frames (top &

ofiles are available from the function Is Ω̂
� �

prior to the coordinate transformation

he orientation-independent features of the propagator need to be compared.
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structure of the data set better even though the tensor fitting yields
relatively large residuals. These residuals are partly due to the
non-Gaussianity of the diffusion process. Thus, they are modeled by
the subsequent terms of the MAP-MRI series. It should be noted
that an important feature of the tensorial scale parameter is its
anisotropy. In certain anatomical regions, decay rates along some
directions can be an order of magnitude different than rates along
other directions. Therefore, it is important to employ an anisotropic
scale parameter; not doing so would lead to employing scale param-
eters far from its optimal value along some directions. This problem
was not realized in some of the earlier works. To assess the quality
of the fitting achieved, we computed the adjusted R2 values for all
voxels. These values were clustered very close to unity, with slight
reductions in white-matter regions. This behavior can be attributed
to the sharpness of the diffusion profiles and the effects of noise
(see the S0 map in Fig. 3). Nonetheless, an average adjusted R2 value
of 0.98 ± .07 across the brain parenchyma was observed, demon-
strating the level of data fidelity achieved using the basis along with
our estimation scheme. Reliance on the tensor model as its first step
is a useful feature of our technique also because it makes comparison
with DTI meaningful and convenient (see above).

Scalar quantities for diffusion along parallel and perpendicular directions

Yet another novel feature of theMAP-MRI framework is the formu-
lation of the problem in a reference frame determined by the tensorial
scale parameter A′. This feature enabled us to introduce scalar mea-
sures parallel with and perpendicular to the principal eigenvector
of this tensor. By no means do we suggest that this decomposition
would consistently represent diffusion parallel with and perpen-
dicular to the fiber orientation as the principal eigenvector of A′

would coincide with the fiber orientation only in regions with highly
coherent fiber bundles. The mismatch between the principal eigen-
vector and the fiber orientation is expected to be most significant in
white-matter areas with more than one distinct fiber bundles. Conse-
quently, the presence of fiber crossings is interpreted as one of the
determinants of contrast in these scalarmaps. In fact, contrast induced
by fiber-crossings was observed to some extent in RTPP maps as
discussed above.

Comparison with reconstruction via Gram–Charlier series

The MAP-MRI framework has a number of important differences
from the reconstruction via the Gram–Charlier series, which also
employs Hermite functions, but is based on the cumulant expansion
of the characteristic function (Liu et al., 2003, 2004). First, the signal
models are different. In the cumulant expansion approach, the loga-
rithm of the signal (the characteristic function) is expanded in a
Taylor series, and the cumulants are estimated from the coefficients
of this non-orthogonal expansion. As such, the Hermite functions
do not appear in the signal domain. Unlike in this approach, our
signal model employs the orthogonal basis of Hermite functions
(see Eqs. (3) and (24)). The first terms in both approaches contain
Gaussians; hence both techniques are generalizations of DTI. However,
unlike in the case of cumulant expansion, the tensor that we employ
functions as a scale parameter, which is estimated from the entire
q-space data. It is not meant to represent the second order cumulants
of displacements. There are a number of difficulties associated with
applying the Gram–Charlier series to the propagator reconstruction
problem. It is well known that the Gram–Charlier series does not yield
a proper (e.g., positive-valued) propagator in many cases of interest
(Blinnikov and Moessner, 1998; Pawula, 1987). Application of this
technique to reconstruct the diffusion propagator has proven to be
problematic within the diffusion MR context as well (Ghosh et al.,
2010). Another problem is that the cumulant expansions suffer from
limited radius of convergence (Frøhlich et al., 2006), and can fail to
model the high-q behavior of the signal decay profiles (see Figs. 1 and
5 in Özarslan et al. (2013)). These problems are overcome in the
MAP-MRI framework.

Other applications of the method

The developed method can be used as a numerical tool to aid in
addressing several important problems that involve the estimation
of microstructural parameters. For example, the decomposition of
the signal into directions parallel and perpendicular to the fiber direc-
tion could make it very convenient to employ the AxCaliber model
(Assaf et al., 2008) to determine the axonal size for arbitrarily oriented
fibers. Because the MAP-MRI framework enables the estimation of in-
dices such as RTOP that demands a complete characterization of
q-space in a robust way, a four-dimensional acquisition (three spatial
and one temporal) to characterize the temporal scaling (TS) contrast
(Özarslan et al., 2012) could be feasible that would produce meaning-
ful estimates of the apparent fractal dimension in the brain (Özarslan
et al., 2006a). The ability of the Hermite functions to represent the
three-dimensional q-space signal could be exploited along with the
compressed sensing method (Candés et al., 2006; Donoho, 2006)
to reconstruct the propagator (Paulsen et al., 2011; Rathi et al.,
2011) from sparsely sampled data (Koay et al., 2012) to further
boost the efficiency of the MAP-MRI technique. Similar to what was
done for one-dimensional q-space imaging (Özarslan et al., 2012),
any bias due to the Rician character of the signal, particularly at large
b-values could be mitigated in three-dimensional q-space data by
incorporating the MAP-MRI framework into a method developed to
remove the effects of noise in magnitude-valued data (Koay et al.,
2009a,b). The MAP-MRI method could be used with complex data as
well; in that case, the odd-ordered ϕ(.) and ψ(.) functions would
also have to be included in the analysis. This would enable the recon-
struction of asymmetric profiles (Ozcan, 2010), which are known to
arise in geometries involving Y-shaped crossings (Liu et al., 2003), a
nearby surface on one side of the voxel (Özarslan et al., 2008b), and
curving fibers (Özarslan et al., 2009a).

Conclusion

MAP-MRI represents a new comprehensive analytical framework
to model the three-dimensional q-space signal and transform it into
apparent propagators. The key feature of the approach is the aniso-
tropic spring constant or scale parameter. The anisotropically-scaled
basis not only improves the ability of MAP-MRI to adapt to very dif-
ferent signal profiles, but can reduce the technique to the widely-
employed DTI method if only the first of the basis functions is
employed. Consequently, the MAP-MRI technique subsumes DTI
while also providing several novel, quantifiable parameters that cap-
ture previously obscured intrinsic features of nervous tissue micro-
structure. The features of the employed basis make the MAP-MRI
framework very robust and it may also be adapted to the technical
limitations of in vivo imaging of clinical patients. Hence, MAP-MRI
should prove helpful for investigating a spectrum of important scien-
tific problems regarding the functional organization of normal and
pathologic nervous tissue. This may ultimately lead to increased
diagnostic accuracy of diffusion-weighted MRI for patients with CNS
disease.
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Appendix A. 3D-SHORE: The special case of isotropic stiffness and
its representation in spherical coordinates

In this section, we shall treat a special case of the above formula-
tion in which the stiffness tensor A is isotropic. In this case all eigen-
values of A are equal, and will be denoted by u0

2. The operator on the
left-hand side of Eq. (20) becomes − u0

2 ∇ 2 + r2/u02, and the prob-
lem can be stated in q-space using spherical coordinates as

− 1
2πu0ð Þ2 ∇

2
q þ 2πu0ð Þ2q2

� �
Ξjlm u0;qð Þ ¼ Λ jlmΞjlm u0;qð Þ; ð56Þ

where q = |q|,Λjlm = 2l + 4j − 1, and the basis functions are given
by

Ξjlm u0;qð Þ ¼
ffiffiffiffiffiffi
4π

p
i−l 2π2u2

0q
2

� �l=2
e−2π2u2

0q
2

Llþ1=2
j−1 4π2u2

0q
2

� �
Ylm Ω̂q

� �
;

ð57Þ

where Lk
α(.) is the associated Laguerre polynomial and Ylm Ω̂q

� �
is the

spherical harmonic, which is a function of the gradient vector's orien-
tation described by the unit vector Ω̂q. Then the MR signal profile can
be expanded in this basis

S qð Þ ¼
XNmax

N¼0
∑
j;lf g

Xl
m¼−l

κ̃ jlmΞjlm u0;qð Þ; ð58Þ

where the second summation is evaluated over all possible values of
j ≥ 1 and l ≥ 0 satisfying the condition 2j + l = N + 2. Fig. 8 illus-
trates the allowed values of N, l, and j when Nmax = 8. Here, the
squares represent the terms corresponding to the even values of l.
Those corresponding to odd values of l, depicted by circles, can be
j=5 j=4 j=3 j=2 j=1

N

Fig. 8. The values of the indices j, l, and N used for Nmax = 8 in the representation of
the series involving spherical coordinates when the stiffness is isotropic. Each point
on this plot represents 2l + 1 different coefficients as the index m may take any inte-
ger value from − l to l. The terms corresponding to odd values of l vanish when the
propagator is symmetric, i.e., when the imaginary part of the signal is 0. In this case,
the points depicted by circles can be neglected, and the total number of coefficients
is reduced from 165 to 95.
neglected when the propagator is symmetric. Note that each point
corresponding to a certain l value contributes 2l + 1 coefficients as
the remaining index m takes values between − l and l.

Similar to what was done earlier, the MR signal attenuation pro-
file, E(q) can be expanded in the same basis. The coefficients are
given by κ jlm ¼ κ̃ jlm=S0, where

S0 ¼
XNmax

N¼0

κ̃ 1þN=2ð Þ00
N þ 1ð Þ!!
N!!

: ð59Þ

Since this representation is totally equivalent to the Cartesian
representation with isotropic potential (see Pluhar and Tolar (1961))
for the matrix that transforms the an1n2n3 into κjlm and vice versa), the
number of independent coefficients for general propagators is still
given by Eq. (28), while for symmetric propagators Eq. (29) holds.

The three-dimensional propagator is expressed by a similar
expression

P rð Þ ¼
XNmax

N¼0
∑
j;lf g

Xl
m¼−l

κ jlmϒjlm u0; rð Þ; ð60Þ

where the basis functions are given through a three-dimensional in-
verse Fourier transform of Ξjlm(u0,q) by

ϒjlm u0; rð Þ ¼ −1ð Þj−1ffiffiffi
2

p
πu3

0

r2

2u2
0

 !l=2

e−r2=2u20Llþ1=2
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 !
Ylm Ω̂
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: ð61Þ

Appendix B. The isotropic propagator and the transition between
spherical and Cartesian representations

The spherical representation with the problem featuring isotropic
stiffness is most useful within the MAP-MRI framework in obtaining
the “isotropic part” of the displacement profile, which is the isotropic
displacement profile that most faithfully represents the true, possibly
anisotropic, propagator. It is possible to extract the isotropic propaga-
tor because the angular dependence is characterized exclusively by
the spherical harmonic function, which is separated from the radial
dependence of the signal. The isotropic component of the propagator
is contained in those terms with l = m = 0 only. This condition fur-
ther implies j = 1 + N/2. The relevant basis functions are given by

ϒ 1þN=2ð Þ00 u0; rð Þ ¼ −1ð ÞN=2
2πð Þ3=2u3

0

e−r2= 2u20ð ÞL1=2N=2
r2

u2
0

 !
: ð62Þ

Using the identities (Gradshteyn and Ryzhik, 2000)

L1=2N=2
r2

u2
0

 !
¼ ∑

n1n2n3f g
Kn1n2n3

L−1=2
n1=2

x2

u2
0

 !
L−1=2
n2=2

y2

u2
0

 !
L−1=2
n3=2

z2

u2
0

 !
ð63aÞ

L−1=2
n=2 t2

� �
¼ −1ð Þn=2Hn tð Þ

2n n=2ð Þ! ; ð63bÞ

it is straightforward to show that the isotropic propagator is given by

Piso rð Þ ¼
XNmax

N¼0

κ 1þN=2ð Þ00 ∑
n1 ;n2 ;n3f g

Bn1n2n3
Ψn1n2n3

u2
0I; r

� �
; 64

where I is the 3 × 3 identity matrix. The above expression is an
expansion in the form of the MAP-MRI series, with coefficients

on1n2n3
¼ Bn1n2n3

κ 1þN=2ð Þ00: ð65Þ

Several inferences can be made from the above findings for isotro-
pic propagators. First, all MAP-MRI coefficients with at least one odd
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index vanish. Second, the coefficients with permutations of the indi-
ces n1, n2, and n3 are equal to each other. Finally, there are a total of
1 + Nmax/2 unique coefficients that describe an isotropic propagator.

These observations can be used to compute the coefficients for
the isotropic, though possibly non-Gaussian, propagator that best
describes a given signal profile. To this end, Eq. (58) can be used to
estimate κ̃ jlm, which can be subsequently divided by S0 to yield κjlm.
The MAP-MRI coefficients describing the isotropic part of the propa-
gator can be obtained by using Eq. (65). Alternatively, one can per-
form the MAP-MRI fitting with 1 + Nmax/2 unknowns by imposing
Eq. (65) from the outset along with A = u0

2I.
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